
Foul Model

Bahia Robotics Team1 , FCPortugal2

1Bahia State University, Brazil

2University of Aveiro, Portugal
University of Minho, Portugal
University of Porto, Portugal

1. Proposed Model

The model proposed will use the useCharging variable, found in the file naosoccer-
sim.rb, in order to activate the method implemented in the SoccerRuleAspect class. The
method will make use of TouchGroups, a vector of agents currently touching each other,
in order to select the agents to be used in the calculations. This implementation will make
use of some variables used in the model proposed last year by Patrick MacAlpine, but it
uses different criteria to identify a foul.

Once the agents are selected, meaning we have a total of two agents of different
teams and neither of them is on the ground, the model then will collect some variables,
in order to proceed with the algorithm. These variables, for each player, are graphically
represented in figure 1 and listed below.

Figure 1. Graphical Representation of variables used by the model

• Pi: Position of the agent.
• Vi: Speed vector of the agent.
• Si: Magnitude of the speed vector.
• Di: Distance between the agent and the ball.
• PiB: Vector between the agent and the ball.
• PiPo: Vector between both agents.
• θViB: Resulting angle between Vi and PiB.
• θViPo: Resulting angle between Vi and PiPo.

These values, throughout the model, will be compared with some thresholds,
which are:

• MinSi: Minimum speed value = 0.2m/s.
• MinθViB: Minimum value for the θViB angle = 30o.
• Min∆D: Minimum distance difference between players = 0.2m.
• Min∆θViPo: Minimum difference between the angle θViPo for each player = 15o.

The values proposed to these thresholds can be modified at any time, by changing
the variables found in the naosoccersim.rb script.

The next step of the charging model is to evaluate which of the players committed
a foul. To do that, it compares the agents intention to reach the ball, that is, the angle
between their move direction and the direction to the ball, with their approach to the op-
ponent, represented by the angle of their move direction with the position of the opponent.
We also verify its angle in relation to the ball, to check if it passes a threshold. Both these
verifications can be seen in the equations bellow.

θViB ≥ θViPo (1)

θViB > MinθViB (2)

Once these calculations are completed, we will have a boolean variable for each
player, with the results. Leaving us with three different possibilities regarding how the
collision occurred. These possibilities can be seen in figure 2.

Figure 2. Possible situations resulting from Equation (1) and (2)

For the first case, when an agent is visibly colliding with its opponent without
moving towards the ball, this player will be tagged as charging.

The second case requires some extra calculations, as it initially seems as both
players are moving towards the ball. However, if one of the players is approaching the
ball from behind, resulting in a collision, this player should be tagged as charging. The
difference between both approaches can be seen in figure 3.

In order to verify if such a thing happened, we use the thresholds defined earlier,
in order to verify if the following conditions are true:

|D1 −D2| > Min∆D (3)

|θV1P2 − θV2P1| > MinθViPo (4)

Figure 3. Difference between a ball dispute and a foul in the second case

If both statements are valid, the agent farthest from the ball will be tagged as
charging.

For the third case, in which neither of the players seem to be moving towards the
ball, the first proposition is to ignore the foul. If, however, this proves to be prejudicial to
the league, it can be easily modified.

Once the cases are solved, and at least one player is thought to have committed a
foul, we test one more value for that player, as shown in the inequality below:

Si ≥MinSi (5)

This player will only be punished by charging if this condition is true. This guar-
antees that the player who committed the foul was actually moving, and not just standing
still in the field.

As the charging model will be something entirely new to the teams, it’s proposed
that the initial punishment for these cases to be a beam outside of the field. Once the
teams start committing less fouls throughout the game, it can be altered to change the
playmode to a free kick for the opposite team.

2. Model Modifications

Once enough tests were made, we noticed some of the fouls were subjective, leading to
some confusion regarding the reason the model charged those falls. One of the easiest
situations to solve were collisions that lead to a stopped robot to fall, in such cases the fall
speed could go over the previously established threshold and that agent could be charged
with a foul penalty. To solve this issue, all that needed to be done was to increase the
minimum speed.

The most complex problem noted was that the collision handle capture collisions
for each body part of the agent, for each server cycle(0.02s). This resulted in small grazes
counting towards a foul check, along with each collision between two robots being rep-
resented as multiple collisions for as long as they are still touching. In Fouls of the
second case, when both agents seemed to be moving towards the ball, this would result
in an initial ball dispute becoming a foul by the result of the robots collisions pushing
them out of their initial path. To solve that, we decided to only verify the first actual
contact between the robots, giving them an immunity time after the first collision, this

ChargingImmunityT ime is parametrized in the same file as the previous thresholds,
being possible to remove it by simply altering it to zero.

Other than these two problems, two other adjustments were made to the model.
The first one being that while inside the small area, the goalie(player with the 1 shirt) will
not be charged with fouls, while making this change, we noticed fouls were being charged
outside the field, so we corrected that as well. Secondly, we decided that collisions that
happened too far from the ball wouldn’t affect the game in any relevant way, therefore
we added a maximum distance to ball for a foul to be charged. This value can also be
changed in the same file.

Finally, it was proposed that the code should verify which part of the agent’s body
collided with the opponent, in order to check if the point of collision is coherent with
the foul charged. This variable, containing the point of the collision, CollisionPos was
added to the AgentState, and by calculating the dot product between the robot’s speed
vector and the vector between its position and is CollisionPos, defined as PCi, we can
verify if it surpasses a given threshold, defined as ChargingMinCollisionPoint, also
added to naosoccersim.rb. Its usage is shown both in the figure and in the inequality
below. This verification is only applied once a player is already thought to be committing
a charging foul.

Vi · PCi < ChargingMinCollisionPoint (6)

Figure 4. Charging point of collision verification

With the new modifications and adjustments, the new thresholds are:

• MinSi= 0.4m/s.
• MinθViB = 30o.
• Min∆D = 0.2m.
• Min∆θViPo: = 15o.
• ChargingImmunityT ime = 1s.
• MaxBallDist = 10m.
• ChargingMinCollisionPoint = 0.0.

